ここでは、実際のモデルに対して vai_p_tensorflow を実行する方法を紹介します。VGG (https://arxiv.org/abs/1409.1557) は、大規模な画像認識用のネットワークです。この例では、TensorFlow-Slim 画像分類モデル ライブラリにある学習済み VGG-16 モデルを使用します。
Tensorflow-Slim のリポジトリと、その中にある学習済み VGG16 モデルをダウンロードします。
$ git clone https://github.com/tensorflow/models.git
$ cd models/research/slim
# mkdir models/vgg16 && cd models/vgg16
$ wget http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
$ tar xzvf vgg_16_2016_08_28.tar.gz
次の説明を参照して、ImageNet データセットを準備します。
https://github.com/tensorflow/models/blob/master/research/inception/README.md#getting-started
vgg16_eval.py
という名前のグラフ評価用スクリプトを作成します。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow as tf
from tensorflow.python.summary import summary
from tensorflow.python.training import monitored_session
from tensorflow.python.training import saver as tf_saver
from datasets import dataset_factory
from nets import nets_factory
from preprocessing import preprocessing_factory
slim = tf.contrib.slim
dataset_name='imagenet'
dataset_split_name='validation'
dataset_dir='/dataset/imagenet/tf_records'
model_name='vgg_16'
labels_offset=1
batch_size=100
num_preprocessing_threads=4
def model_fn():
tf.logging.set_verbosity(tf.logging.INFO)
tf_global_step = slim.get_or_create_global_step()
######################
# Select the dataset #
######################
dataset = dataset_factory.get_dataset(dataset_name,
dataset_split_name,
dataset_dir)
####################
# Select the model #
####################
network_fn = nets_factory.get_network_fn(
model_name,
num_classes=(dataset.num_classes - labels_offset),
is_training=False)
##############################################################
# Create a dataset provider that loads data from the dataset #
##############################################################
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
shuffle=False,
common_queue_capacity=2 * batch_size,
common_queue_min=batch_size)
[image, label] = provider.get(['image', 'label'])
label -= labels_offset
#####################################
# Select the preprocessing function #
#####################################
preprocessing_name = model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=False)
eval_image_size = network_fn.default_image_size
image = image_preprocessing_fn(image, eval_image_size, eval_image_size)
images, labels = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocessing_threads,
capacity=5 * batch_size)
####################
# Define the model #
####################
logits, _ = network_fn(images)
variables_to_restore = slim.get_variables_to_restore()
predictions = tf.argmax(logits, 1)
org_labels = labels
labels = tf.squeeze(labels)
eval_metric_ops = {
'top-1': slim.metrics.streaming_accuracy(predictions, labels),
'top-5': slim.metrics.streaming_recall_at_k(logits, org_labels, 5)
}
return eval_metric_ops
バイナリ ファイルではなく、可読性の高いテキスト ファイルを出力するように models/research/slim/export_inference_graph.py を編集します。
+ from google.protobuf import text_format
- with gfile.GFile(FLAGS.output_file, 'wb') as f:
- f.write(graph_def.SerializeToString())
+ with gfile.GFile(FLAGS.output_file, 'w') as f:
+ f.write(text_format.MessageToString(graph_def))
推論グラフをエクスポートします。
python export_inference_graph.py \
--model_name=vgg_16 \
--output_file=vgg_16_inf_graph.pbtxt \
--dataset_dir=/opt/dataset/tf_records
モデル解析を実行します。
vai_p_tensorflow \
--action=ana \
--input_graph=vgg_16_inf_graph.pbtxt \
--input_ckpt=vgg_16.ckpt \
--eval_fn_path=vgg_16_eval.py \
--target=top-5 \
--max_num_batches=500 \
--workspace=/home/deephi/models/research/slim/models/vgg16 \
--exclude="vgg_16/fc6/Conv2D, vgg_16/fc7/Conv2D, vgg_16/fc8/Conv2D" \
--output_nodes="vgg_16/fc8/squeezed"
vgg_16_eval.py で、変数 batch_size の初期値を 100 に定義しています。ImageNet の検証用データセットには 50,000 個のサンプルがあるため、評価時にデータセットのすべてのサンプルをテストできるように、max_num_steps を 500 に設定します。
モデルのプルーニングを実行します。
vai_p_tensorflow \
--action=prune \
--input_graph=vgg_16_inf_graph.pbtxt \
--input_ckpt=vgg_16.ckpt \
--output_graph=sparse_graph.pbtxt \
--output_ckpt=sparse.ckpt \
--workspace=/home/deephi/models/research/slim/models/vgg16 \
--sparsity=0.15 \
--exclude="vgg_16/fc6/Conv2D, vgg_16/fc7/Conv2D, vgg_16/fc8/Conv2D" \
--output_nodes="vgg_16/fc8/squeezed"
models/research/slim/train_image_classifier.py を開いて、main()
関数の最初に次の行を挿入します。
def main():
+ tf.set_pruning_mode()
プルーニング済みモデルを微調整します。
python train_image_classifier.py \
--model_name=vgg_16 \
--train_dir=./models/vgg16/ft \
--dataset_name=imagenet \
--dataset_dir=/opt/dataset/tf_records \
--dataset_split_name=train \
--checkpoint_path=./models/vgg16/sparse.ckpt \
--labels_offset=0 \
--save_interval_secs=600 \
--batch_size=32 \
--num_clones=4 \
--weight_decay=5e-4 \
--optimizer=adam \
--learning_rate=1e-2 \
--learning_rate_decay_type=polynomial \
--decay_steps=200000 \
--max_number_of_steps=200000
密なチェックポイントを生成し、グラフをフリーズします。
vai_p_tensorflow \
--action=transform \
--input_ckpt=./models/vgg16/ft/model.ckpt-200000 \
--output_ckpt=./models/vgg16/dense.ckpt
freeze_graph.py \
--input_graph=./models/vgg16/sparse_graph.pbtxt \
--input_checkpoint=./models/vgg16/dense.ckpt \
--input_binary=false \
--output_graph=./models/vgg16/vgg16_pruned.pb \
--output_node_names=”vgg_16/fc8/squeezed"
量子化のプロセスはほとんど同じため、このユーザー ガイドには Resnet_v1_50 の量子化のみを含めています。詳細は、こちら を参照してください。