PCS/PMA Only Clocking - 3.3 English

40G/50G High Speed Ethernet Subsystem v3.3 Product Guide (PG211)

Document ID
PG211
Release Date
2023-11-01
Version
3.3 English

The clocking architecture for the 40G/50G PCS is illustrated below. There are three clock domains in the datapath, as illustrated by the dashed lines in the following figure:

Figure 1. PCS/PMA Clocking

refclk_p0, refclk_n0, tx_serdes_refclk

The refclk differential pair is required to be an input to the FPGA. The example design includes a buffer to convert this clock to a single-ended signal refclk, which is used as the reference clock for the GT block. The tx_serdes_refclk is directly derived from refclk.
Note: The refclk must be chosen so that the tx_mii_clk meets the requirements of 802.3, which is within 100 ppm of 312.5 MHz for 40G and 390.625 MHz for 50G.

tx_mii_clk

The tx_mii_clk is an output which is the same as the tx_serdes_refclk. The entire TX path is driven by this clock. You must synchronize the TX path mii bus to this clock output. All TX control and status signals are referenced to this clock.

rx_serdes_clk

The rx_serdes_clk is derived from the incoming data stream within the GT block. The incoming data stream is processed by the RX core in this clock domain.

rx_clk_out

The rx_clk_out output signal is presented as a reference for the RX control and status signals processed by the RX core. It is the same frequency as the rx_serdes_clk.

rx_mii_clk

The rx_mii_clk input is required to be synchronized to the RX XLGMII/50GMII data bus. This clock and the RX XLGMII/50GMII bus must be within 100 ppm of the required frequency, which is 312.5 MHz for 40G and 390.625 MHz for 50G.

dclk

The dclk signal must be a convenient stable clock. It is used as a reference frequency for the GT helper blocks which initiate the GT itself. In the example design, a typical value is 75 MHz, which is readily derived from the 300 MHz clock available on the VCU107 evaluation board.

Note: The actual frequency must be known to the GT helper blocks for proper operation.