- Prepare dataset. For tf_resnet50 model, download the calibration images from Imagenet_calib.tar.gz, and copy into Vitis-AI folder (Full dataset is from ImageNet).
- Launch the docker
image.
[Host]$ ./docker_run.sh xilinx/vitis-ai-tensorflow-cpu:latest
- Quantize the model.Set CALIB_BATCH_SIZE in the tf_resnetv1_50_imagenet_224_224_6.97G_3.0/code/quantize/config.ini to 5. Then run
[Docker]$ conda activate vitis-ai-tensorflow [Docker]$ tar -xzvf Imagenet_calib.tar.gz -C tf_resnetv1_50_imagenet_224_224_6.97G_3.0/data [Docker]$ cd tf_resnetv1_50_imagenet_224_224_6.97G_3.0/code/quantize [Docker]$ bash quantize.sh
After running quantize.sh, the quantized model are available in tf_resnetv1_50_imagenet_224_224_6.97G_3.0/quantized